GeometryCoach.com

Midpoint and Distance in the Coordinate Plane

Unit 1 Lesson 7

Midpoint and Distance in the Coordinate Plane

Students will be able to:

Calculate midpoint and distance from two endpoints of a line segment both on and off of the coordinate plane.

Midpoint and Distance in the Coordinate Plane

Key Vocabulary: Midpoint
 Distance
 Coordinate Plane

Midpoint and Distance in the Coordinate Plane
A midpoint of a segment is a point that divides the segment into two congruent segments.

On a number line the coordinates of the midpoint of a segment whose endpoints have coordinates $\boldsymbol{x}_{\mathbf{1}}$ and $\boldsymbol{x}_{\mathbf{2}}$ is:

$$
M=\frac{x_{1}+x_{2}}{2}
$$

Midpoint and Distance in the Coordinate Plane

Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.

a. Segment $\overline{A B}$

$$
x_{1}=-5 \quad x_{2}=1 \quad M=?
$$

Midpoint and Distance in the Coordinate Plane
Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.
a. Segment $\overline{A B}$

$M=-2$

Midpoint and Distance in the Coordinate Plane

Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.

b. Segment $\overline{K L}$

$$
x_{1}=-4 \quad x_{2}=-2 \quad M=?
$$

Midpoint and Distance in the Coordinate Plane
Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.
b. Segment $\overline{K L}$

$$
x_{1}=-4 \quad x_{2}=-2 \quad M=? \quad M=\frac{x_{1}+x_{2}}{2}
$$

$$
\begin{aligned}
& M=\frac{-4+(-2)}{2} \\
& M=\frac{-6}{2} \\
& M=-3
\end{aligned}
$$

Midpoint and Distance in the Coordinate Plane

The Midpoint Formula

In a coordinate plane, the coordinates of the midpoint of segments whose endpoints have coordinates $\boldsymbol{A}\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{1}}\right)$ and $\boldsymbol{B}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ are:

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Midpoint and Distance in the Coordinate Plane

Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.

a. Segment $\overline{C D} \quad C(6,-1) \quad D(4,2) \quad M=$?

Midpoint and Distance in the Coordinate Plane
Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.
a. Segment $\overline{C D}$

$$
\begin{aligned}
& C(6,-1) \quad D(4,2) \quad M=? \\
& \left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right) \\
& M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& M=\left(\frac{6+4}{2}, \frac{-1+2}{2}\right) \\
& M=\left(\frac{10}{2}, \frac{1}{2}\right) \quad M=\left(5, \frac{1}{2}\right)
\end{aligned}
$$

Midpoint and Distance in the Coordinate Plane
Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.
b. Segment $\overline{E R}$

$E(-5,6)$
$R(-7,-4)$
$M=$?

Midpoint and Distance in the Coordinate Plane
Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.
b. Segment $\overline{E R}$

$$
\begin{aligned}
& E(-5,6) \quad R(-7,-4) \quad M=? \\
& \left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right) \\
& M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& M=\left(\frac{-5+(-7)}{2}, \frac{6+(-4)}{2}\right) \\
& M=\left(\frac{-12}{2}, \frac{2}{2}\right) \quad M=(-6,1)
\end{aligned}
$$

Midpoint and Distance in the Coordinate Plane

The Distance Formula

To calculate the distance \boldsymbol{d} between points $\boldsymbol{A}\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{1}}\right)$ and $\boldsymbol{B}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ use the formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The Distance Formula is based on the Pythagorean Theorem.

Midpoint and Distance in the Coordinate Plane

Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth.

a. $S(4,1) \quad K(0,-2) \quad d(S, K)=$?

Midpoint and Distance in the Coordinate Plane
Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth.
a. $S(4,1)\left(x_{1}, y_{1}\right)$
$K(0,-2) \quad\left(x_{2}, y_{2}\right)$
$d(S, K)=$?

$$
\begin{aligned}
& d(S, K)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d(S, K)=\sqrt{(0-4)^{2}+(-2-1)^{2}} \\
& d(S, K)=\sqrt{(-4)^{2}+(-3)^{2}} \\
& d(S, K)=\sqrt{16+9} \\
& d(S, K)=\sqrt{25} \\
& d(S, K)=5
\end{aligned}
$$

Midpoint and Distance in the Coordinate Plane

Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth.

$$
\text { b. } L(-5,5) \quad M(-2,4) \quad d(L, M)=\text { ? }
$$

Midpoint and Distance in the Coordinate Plane
Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth. b. $L(-5,5) \quad\left(x_{1}, y_{1}\right) \quad M(-2,4) \quad\left(x_{2}, y_{2}\right) \quad d(L, M)=$?

$$
\begin{aligned}
& d(L, M)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d(L, M)=\sqrt{(-2-(-5))^{2}+(4-5)^{2}} \\
& d(L, M)=\sqrt{(-2+5)^{2}+(-1)^{2}} \\
& d(L, M)=\sqrt{(3)^{2}+(-1)^{2}} \\
& d(L, M)=\sqrt{9+1} \\
& d(L, M)=\sqrt{10} \approx 3.2
\end{aligned}
$$

