

Unit 1 Lesson 7

Students will be able to:

Calculate midpoint and distance from two endpoints of a line segment both on and off of the coordinate plane.

Key Vocabulary:

Midpoint

Distance

Coordinate Plane

A midpoint of a segment_is a point that divides the segment into two congruent segments.

On a number line the coordinates of the midpoint of a segment whose endpoints have

$$\frac{x_1+x}{2}$$

coordinates x_1 and x_2 is:

Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.

a. Segment \overline{AB}

$$x_1 = -5$$
 $x_2 = 1$ $M = ?$

Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.

a. Segment \overline{AB}

$$x_1 = -5$$
 $x_2 = 1$ $M = ?$

A M B

-6 -5 -4 -3 -2 -1 0 1

$$M = \frac{x_1 + x_2}{2}$$

$$M = \frac{3+1}{2}$$

$$M = \frac{-4}{2}$$

Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.

b. Segment $\overline{\mathit{KL}}$

$$x_1 = -4$$
 $x_2 = -2$ $M = ?$

Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.

Segment KL

 $x_1 = -4$ $x_2 = -2$ M = ? $M = \frac{x_1 + x_2}{2}$

The Midpoint Formula

In a coordinate plane, the coordinates of the midpoint of segments whose endpoints have coordinates $A(x_1, y_1)$ and $B(x_2, y_2)$ are:

$$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.

a. Segment \overline{CD} C(6,-1) D(4,2) M=?

Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.

a. Segment *CD*

$$C(6,-1)$$
 $D(4,2)$ $M=?$

$$I = ?$$

$$M=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

 (x_1, y_1) (x_2, y_2)

$$M=\left(\frac{6+4}{2},\frac{-1+2}{2}\right)$$

$$M = \left(\frac{10}{2}, \frac{1}{2}\right)$$
 $M = \left(5, \frac{1}{2}\right)$

Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.

b. Segment *ER*

$$E(-5,6)$$

$$E(-5,6)$$
 $R(-7,-4)$ $M=?$

Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.

b. Segment *ER*

$$E(-5,6)$$
 $R(-7,-4)$ $M=?$

$$(x_1, y_1)$$
 (x_2, y_2)

$$M = 1$$

$$M=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2}
ight)$$

$$M = \left(\frac{-5 + (-7)}{2}, \frac{6 + (-4)}{2}\right)$$

$$M = \left(\frac{-12}{2}, \frac{2}{2}\right) \qquad M = (-6, 1)$$

The Distance Formula

To calculate the distance d between points $A\left(x_1,y_1\right)$ and $B(x_2,y_2)$ use the formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The Distance Formula is based on the Pythagorean Theorem.

Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth.

a. S(4,1) K(0,-2) d(S,K) = ?

Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth.

a. S(4,1) (x_1,y_1) K(0,-2) (x_2,y_2) d(S,K) = ?

$$d(S,K) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d(S,K) = \sqrt{(0 - 4)^2 + (-2 - 1)^2}$$

$$d(S,K) = \sqrt{(-4)^2 + (-3)^2}$$

$$d(S,K) = \sqrt{16 + 9}$$

$$d(S,K) = \sqrt{25}$$

$$d(S,K) = 5$$

Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth.

b.
$$L(-5,5)$$
 $M(-2,4)$

d(L,M) = ?

Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth.

 $d(L,M)=\sqrt{9+1}$

b.
$$L(-5,5)$$
 (x_1,y_1) $M(-2,4)$ (x_2,y_2) $d(L,M)=?$
$$L(-5,5)$$
 $M(-2,4)$
$$d(L,M) = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

$$d(L,M) = \sqrt{(-2-(-5))^2+(4-5)^2}$$

$$d(L,M) = \sqrt{(-2+5)^2+(-1)^2}$$

$$d(L,M) = \sqrt{(3)^2+(-1)^2}$$

$$d(L,M) = \sqrt{10} pprox 3.2$$
 Geometry Coach.com