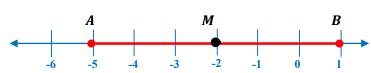

Midpoint and Distance in the Coordinate Plane Guide Notes

A midpoint of a segment is a point that divides the segment into two congruent segments.

On a number line the coordinates of the midpoint of a segment whose endpoints have coordinates x_1 and x_2 is:


$$M=\frac{x_1+x_2}{2}$$

Sample Problem 1: Find the coordinate of the midpoint of the segment with the given endpoints.

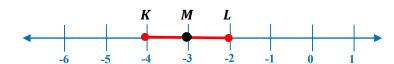
1

Segment \overline{AB}

$$M = ?$$

$$M=\frac{x_1+x_2}{2}$$

$$M = \frac{-5 + 1}{2}$$


$$M = \frac{-4}{2}$$

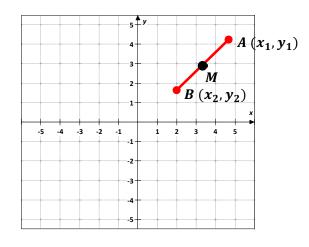
$$M = -2$$

Segment \overline{KL} b.

$$x_1 = -4$$

 $M = ?$

$$x_2 = -2$$


$$M = \frac{x_1 + x_2}{2}$$

$$M = \frac{-4 + (-2)}{2}$$

$$M = \frac{-6}{2}$$

$$M = -3$$

The Midpoint Formula

In a coordinate plane, the coordinates of the midpoint of segments whose endpoints have coordinates $A(x_1, y_1)$ and $B(x_2, y_2)$ are:

$$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Sample Problem 2: Find the coordinate of the midpoint of the segment with the given endpoints.

Segment \overline{CD}

$$C(6,-1)$$

D(4,2)

D(4,2)

Segment
$$\overline{CD}$$

$$C(6,-1)$$
 $D(4,2)$ $(x_1,y_1)=(6,-1)$ $(x_2,y_2)=(4,2)$

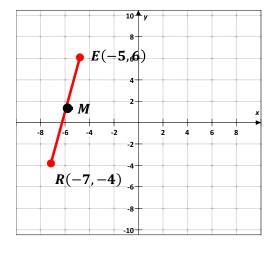
$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$M = \left(\frac{6 + 4}{2}, \frac{-1 + 2}{2}\right)$$

$$M=\left(\frac{6+4}{2},\frac{-1+2}{2}\right)$$

$$M = \left(\frac{10}{2}, \frac{1}{2}\right)$$

$$M = \left(5, \frac{1}{2}\right)$$


$$M = \left(5, \frac{1}{2}\right)$$

Segment \overline{ER}

$$E(-5, 6)$$

$$R(-7, -4)$$

$$M = ?$$

Segment \overline{ER}

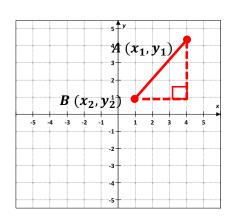
$$E(-5,6)$$

$$E(-5,6)$$
 $R(-7,-4)$ $(x_1,y_1)=(-5,6)$ $(x_2,y_2)=(-7,-4)$

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$M = \left(\frac{-5 + (-7)}{2}, \frac{6 + (-4)}{2}\right)$$

$$M = \left(\frac{-12}{2}, \frac{2}{2}\right)$$


$$M = \left(\frac{-5 + (-7)}{2}, \frac{\overline{6} + (-4)}{2}\right)$$

$$M = \left(\frac{-12}{2}, \frac{2}{2}\right)$$

$$M=(-6,1)$$

Midpoint and Distance in the Coordinate Plane Guide Notes

The Distance Formula

To calculate the distance d between points $A(x_1, y_1)$ and $B(x_2, y_2)$ use the formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The Distance Formula is based on the Pythagorean Theorem.

Sample Problem 3: Find the distance between each pair of points. Round to the nearest tenth.

a.
$$S(4, 1)$$

$$d(S,K) = ?$$

$$K(0,-2)$$

K(0,-2)

S(4,1)

M(-2,4)

$$S(4,1)$$

 $(x_1, y_1) = (4,1)$
 $d(S, K) = ?$

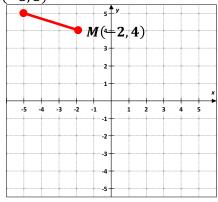
$$K(0,-2)$$

$$(x_1, y_1) = (4, 1)$$
 $(x_2, y_2) = (0, -2)$
 $d(S, K) = ?$

$$d(S,K) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d(S,K) = \sqrt{(0-4)^2 + (-2-1)^2}$$

$$d(S,K) = \sqrt{(-4)^2 + (-3)^2}$$


$$d(S,K)=\sqrt{16+9}$$

$$d(S,K)=\sqrt{25}$$

$$d(S,K)=5$$

b.
$$L(-5,5)$$

 $d(L,M) = ?$

$$L(-5,5)$$

$$L(-5,5)$$

$$M(-2,4)$$

$$(x_1, y_1) = (-5, 5)$$

$$L(-5,5)$$
 $M(-2,4)$ $(x_1,y_1)=(-5,5)$ $(x_2,y_2)=(-2,4)$

$$d(L, M) = ?$$

$$d(L,M) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d(L,M) = \sqrt{(-2-(-5))^2 + (4-5)^2}$$

$$d(L,M) = \sqrt{(-2+5)^2 + (-1)^2}$$

$$d(L,M) = \sqrt{(3)^2 + (-1)^2}$$

$$d(L,M) = \sqrt{9+1}$$

$$d(L,M)=\sqrt{10}$$

$$d(L,M)\approx 3,2$$

Name:	Period:	Date:

Midpoint and Distance in the Coordinate Plane Guide Notes