

Volumes of Prisms and Cylinders

Unit 11 Lesson 4

Students will be able to:

Understand how to find the volumes of prisms and cylinders

Key Vocabulary:

- Prism
- Cylinder
- Volume of Prism
- Volume of Cylinder

Prism

A prism is a polyhedron with two congruent parallel faces called **bases**. The non-base faces of a prism are called **lateral faces**.

Examples:

Volume of a Prism

The volume of a prism is the product of the area of the base \boldsymbol{A} and height \boldsymbol{h} of the prism.

$$V = A \times h$$

Problem 1: Find the volume of the prism shown below.

Problem 1: Find the volume of the prism shown below.

First find the base area of the prism:

$$A = 6m \times 7m$$

$$A = 42 m^2$$

Now find the volume:

$$V = A \times h$$

$$V = 42 \times 20$$

$$V = 840 m^3$$

Cylinder

A cylinder is like a prism, but with circular bases.

Examples:

Volume of a Cylinder

The volume of a cylinder is the product of the area of the circular base $A = \pi r^2$ and height h of the prism.

$$V = \pi r^2 \times h$$

Problem 2: Find the volume of the cylinder shown below.

Problem 2: Find the volume of the cylinder shown below.

First find the area of the circular base:

$$A = \pi r^2 \qquad A = \pi (2)^2$$

$$A = 4\pi cm^2$$

Now find the volume:

$$V = A \times h$$

$$V = 4\pi \times 8$$

$$V = 100.53 cm^{3}$$

