GeometryCoach.com

Trigonometry

Unit 8 Lesson 3

TRIGONOMETRY

Students will be able to:

Understand the trigonometric ratios and their inverses to find the angles in a right triangle.

Key Vocabulary:

- Right triangle
- Hypotenuse, Opposite, Adjacent
- Sine, cosine, Tangent
- Cosecant, Secant, Cotangent
- Inverse of Trigonometric ratios

TRIGONOMETRY

A Right-angled triangle(named as right triangle) is a triangle which has one of its angles equal to 90 degrees.

TRIGONOMETRY

There are properties associated with a right triangle.

- A hypotenuse is the line segment opposite to the right-angle.
- An opposite is the line segment opposite to the angle Θ.
- An adjacent is the line segment next to the angle Θ.

TRIGONOMETRY

Trigonometric Ratios

There are three basic trigonometric ratios:

1. Sine

$$
\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }}
$$

TRIGONOMETRY

Trigonometric Ratios
2. Cosine

$$
\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

3. Tangent

$$
\tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}
$$

TRIGONOMETRY

Problem 1: Write the trigonometric ratios $\sin (C), \cos (C)$ and $\tan (C)$ for the triangle shown.

TRIGONOMETRY

Problem 1: Write the trigonometric ratios $\sin (C), \cos (C)$ and $\tan (C)$ for the triangle shown.

$$
\begin{aligned}
& \square \sin (C)=\frac{10}{26}=\frac{5}{13} \\
& \square \cos (C)=\frac{24}{26}=\frac{12}{13} \\
& \square \tan (C)=\frac{10}{24}=\frac{5}{12}
\end{aligned}
$$

TRIGONOMETRY

Reciprocal Trigonometric Ratios

Each of the three trigonometric ratios has a reciprocal ratio:

1. Cosecant

$$
\operatorname{cosec}(\theta)=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{1}{\sin (\theta)}
$$

TRIGONOMETRY

Reciprocal Trigonometric Ratios

2. Secant

$$
\sec (\theta)=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{1}{\cos (\theta)}
$$

3. Cotangent

$$
\cot (\theta)=\frac{\text { adjacent }}{\text { opposite }}=\frac{1}{\cot (\theta)}
$$

TRIGONOMETRY

Inverse of Trigonometric Ratios

The inverse of a trigonometric ratio can be used to find the unknown angles in a right triangle.

$$
\begin{aligned}
\theta & =\sin ^{-1}\left(\frac{\text { opposite }}{\text { hypotenuse }}\right) \\
\theta & =\cos ^{-1}\left(\frac{\text { adjacent }}{\text { hypotenuse }}\right) \\
\theta & =\tan ^{-1}\left(\frac{\text { opposite }}{\text { adjacent }}\right)
\end{aligned}
$$

TRIGONOMETRY

Problem 2: Find the value of x. Round to the nearest degree.

TRIGONOMETRY

Problem 2: Find the value of x. Round to the nearest degree.

We know that:

$$
\tan (\theta)=\frac{\text { opposite }}{\text { adjacent }} \quad \square \theta=\tan ^{-1}\left(\frac{\text { opposite }}{\text { adjacent }}\right)
$$

$$
\begin{array}{r}
\square \theta=\tan ^{-1}\left(\frac{18}{6}\right) \\
\theta=\tan ^{-1}(3) \\
\theta=71.6^{\circ}
\end{array}
$$

