

Trigonometry

Unit 8 Lesson 3

Students will be able to:

Understand the trigonometric ratios and their inverses to find the angles in a right triangle.

Key Vocabulary:

- Right triangle
- Hypotenuse, Opposite, Adjacent
- Sine, cosine, Tangent
- Cosecant, Secant, Cotangent
- Inverse of Trigonometric ratios

A Right-angled triangle(named as right triangle) is a triangle which has one of its angles equal to 90 degrees.

There are properties associated with a right triangle.

- A **hypotenuse** is the line segment opposite to the right-angle.
- An **opposite** is the line segment opposite to the angle Θ.
- An adjacent is the line segment next to the angle Θ.

Trigonometric Ratios

There are three basic trigonometric ratios:

1. Sine

$$sin(\theta) = \frac{opposite}{hypotenuse}$$

Trigonometric Ratios

2. Cosine

$$cos(\theta) = \frac{adjacent}{hypotenuse}$$

3. Tangent

$$tan(\theta) = \frac{opposite}{adjacent}$$

Problem 1: Write the trigonometric ratios sin(C), cos(C) and tan(C) for the triangle shown.

Problem 1: Write the trigonometric ratios sin(C), cos(C) and tan(C) for the triangle shown.

$$sin(C) = \frac{10}{26} = \frac{5}{13}$$

$$cos(C) = \frac{24}{26} = \frac{12}{13}$$

$$tan(C) = \frac{10}{24} = \frac{5}{12}$$

Reciprocal Trigonometric Ratios

Each of the three trigonometric ratios has a reciprocal ratio:

1. Cosecant

$$cosec(\theta) = \frac{hypotenuse}{opposite} = \frac{1}{sin(\theta)}$$

Reciprocal Trigonometric Ratios

2. Secant

$$sec(\theta) = \frac{hypotenuse}{adjacent} = \frac{1}{cos(\theta)}$$

3. Cotangent

$$cot(\theta) = \frac{adjacent}{opposite} = \frac{1}{cot(\theta)}$$

Inverse of Trigonometric Ratios

The inverse of a trigonometric ratio can be used to find the unknown angles in a right triangle.

$$\theta = sin^{-1} \left(\frac{opposite}{hypotenuse} \right)$$

$$\theta = cos^{-1} \left(\frac{adjacent}{hypotenuse} \right)$$

$$\theta = tan^{-1} \left(\frac{opposite}{adjacent} \right)$$

Problem 2: Find the value of x. Round to the nearest degree.

Problem 2: Find the value of x. Round to the nearest degree.

We know that:

$$tan(\theta) = \frac{opposite}{adjacent}$$

$$\theta = tan^{-1} \left(\frac{opposite}{adjacent} \right)$$

$$\theta = tan^{-1} \left(\frac{18}{6} \right)$$

$$\theta = tan^{-1}(3)$$

$$\theta = 71.6^{\circ}$$