\qquad Period: \qquad Date: \qquad

Trigonometry Guide Notes

A Right-angled triangle (named as right triangle) is a triangle which has one of its angles equal to 90 degrees.

There are properties associated with a right triangle.

- A hypotenuse is the line segment opposite to the right-angle.
- An opposite is the line segment opposite to the angle Θ.
- An adjacent is the line segment next to the angle Θ.

Trigonometric Ratios

There are three basic trigonometric ratios:

1. Sine

$$
\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }}
$$

2. Cosine

$$
\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

3. Tangent

$$
\tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}
$$

\qquad Period: \qquad Date: \qquad

Trigonometry Guide Notes

Problem 1: Write the trigonometric ratios $\sin (C), \cos (C)$ and $\tan (C)$ for the triangle shown.

Reciprocal Trigonometric Ratios

Each of the three trigonometric ratios has a reciprocal ratio:

1. Cosecant

$$
\operatorname{cosec}(\theta)=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{1}{\sin (\theta)}
$$

2. Secant

$$
\sec (\theta)=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{1}{\cos (\theta)}
$$

3. Cotangent

$$
\cot (\theta)=\frac{\text { adjacent }}{\text { opposite }}=\frac{1}{\cot (\theta)}
$$

\qquad Period: \qquad Date: \qquad

Trigonometry Guide Notes

Inverse of Trigonometric Ratios

The inverse of a trigonometric ratio can be used to find the unknown angles in a right triangle.

$$
\begin{gathered}
\theta=\sin ^{-1}\left(\frac{\text { opposite }}{\text { hypotenuse }}\right) \\
\theta=\cos ^{-1}\left(\frac{\text { adjacent }}{\text { hypotenuse }}\right) \\
\theta=\tan ^{-1}\left(\frac{\text { opposite }}{\text { adjacent }}\right)
\end{gathered}
$$

Problem 2: Find the value of x. Round to the nearest degree.

