GeometryCoach.com
Perimeters and Areas of Similar
Figures
Unit 10 Lesson 4

Perimeters and Areas of Similar Figures

Students will be able to:

- Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Solve real-world and mathematical problems involving area.

Perimeters and Areas of Similar Figures

Key Vocabulary:

- Similar figures
- Corresponding sides
- Scale factor
- Similarity ratio

Perimeters and Areas of Similar Figures

- SIMILAR FIGURES are figures whose corresponding angles are congruent and corresponding side lengths are proportional.
- Corresponding sides of similar figures are in proportion.

Perimeters and Areas of Similar Figures

- SCALE FACTOR or SIMILARITY RATIO is the ratio of the lengths of the corresponding sides of two similar figures.
- The perimeters and areas are related by the scale factor.

Perimeters and Areas of Similar Figures

SCALE FACTOR
 RATIO OF PERIMETERS

$\frac{a}{b}$

$$
\frac{P_{1}}{P_{2}}=\frac{a}{b}
$$

Perimeters and Areas of Similar Figures

SCALE FACTOR

RATIO OF AREAS

$\frac{a}{b}$

$$
\frac{A_{1}}{A_{2}}=\frac{a^{2}}{b^{2}}
$$

Perimeters and Areas of Similar Figures
Sample Problem 1: The figures in each pair are similar. Compare the first figure to the second. Find the scale factor and give the ratio of the perimeters and the ratio of the areas.

a. $\quad \triangle A S R \sim \triangle C T N$

Perimeters and Areas of Similar Figures
Sample Problem 1: The figures in each pair are similar. Compare the first figure to the second. Find the scale factor and give the ratio of the perimeters and the ratio of the areas.

$$
\begin{aligned}
& \frac{\overline{A R}}{\overline{C N}}=\frac{4}{12}=\frac{1}{3} \text { SCALE FACTOR } \\
& \frac{P_{A R S}}{P_{C N T}}=\frac{1}{3} \text { RATIO OF PERIMETERS } \\
& \frac{A_{A R S}}{A_{C N T}}=\frac{1^{2}}{3^{2}}=\frac{1}{9} \text { RATIO OF AREAS }
\end{aligned}
$$

Perimeters and Areas of Similar Figures
Sample Problem 1: The figures in each pair are similar. Compare the first figure to the second. Find the scale factor and give the ratio of the perimeters and the ratio of the areas.
b. ZPDH~MTOR

Perimeters and Areas of Similar Figures
Sample Problem 1: The figures in each pair are similar. Compare the first figure to the second. Find the scale factor and give the ratio of the perimeters and the ratio of the areas.
b. ZPDH~MTOR

$$
\frac{\overline{Z H}}{\overline{M R}}=\frac{9}{3}=\frac{3}{1} \quad \text { SCALE FACTOR }
$$

$$
\frac{P_{Z P H D}}{P_{M T O R}}=\frac{3}{1} \text { RATIO OF PERIMETERS }
$$

$$
\frac{A_{Z P H D}}{A_{M T O R}}=\frac{3^{2}}{1^{2}}=\frac{9}{1} \text { RATIO OF AREAS }
$$

Perimeters and Areas of Similar Figures
Sample Problem 2: The figures in each pair are similar. Find the area of the other figure.

$$
A_{L D P E}=12 \mathrm{~m}^{2} \quad \overline{L E}=4 \mathrm{~m} \quad \overline{B C}=8 \mathrm{~m} \quad A_{B T R C}=?
$$

Perimeters and Areas of Similar Figures
Sample Problem 2: The figures in each pair are similar.
Find the area of the other figure.

Perimeters and Areas of Similar Figures
Sample Problem 3: Find the scale factor and the ratio of perimeters for each pair of similar figures.
$\triangle A S R \sim \triangle N T C \quad A_{A S R}=8 \sqrt{3} m^{2} \quad A_{N T C}=128 \sqrt{3} m^{2}$

Perimeters and Areas of Similar Figures
Sample Problem 3: Find the scale factor and the ratio of perimeters for each pair of similar figures.
$\triangle A S R \sim \Delta N T C$
$A_{A S R}=8 \sqrt{3} m^{2} \quad A_{N T C}=128 \sqrt{3} \mathrm{~m}^{2}$

$$
\begin{aligned}
& \frac{A_{A S R}}{A_{N T C}}=\frac{8 \sqrt{3}}{128 \sqrt{3}}=\frac{8}{128}=\frac{1}{16} \\
& \frac{P_{A S R}}{P_{N T C}}=\frac{\sqrt{A_{A S R}}}{\sqrt{A_{N T C}}}=\frac{\sqrt{1}}{\sqrt{16}}=\frac{1}{4} \\
& \overline{A R} \\
& \overline{\overline{N C}}=\frac{P_{A S R}}{P_{N T C}}=\frac{1}{4}
\end{aligned}
$$

Perimeters and Areas of Similar Figures
Sample Problem 4: Find the values of x and y when the smaller similar rectangle shown here has the area given.

$$
A_{1}=10 \mathrm{ft}^{2} \quad x=? \quad y=?
$$

Perimeters and Areas of Similar Figures
Sample Problem 4: Find the values of x and y when the smaller similar rectangle shown here has the area given.

$$
A_{1}=10 \mathrm{ft}^{2} \quad x=? \quad y=?
$$

Perimeters and Areas of Similar Figures
Sample Problem 4: Find the values of x and y when the smaller similar rectangle shown here has the area given.

$$
A_{1}=10 \mathrm{ft}^{2} \quad x=? \quad y=?
$$

$$
\begin{aligned}
& \frac{x}{9}=\frac{\sqrt{A_{1}}}{\sqrt{A_{2}}}=\frac{\sqrt{1}}{\sqrt{9}}=\frac{1}{3} \\
& \frac{x}{9}=\frac{1}{3} \\
& x=3 f t
\end{aligned}
$$

Perimeters and Areas of Similar Figures
Sample Problem 4: Find the values of x and y when the smaller similar rectangle shown here has the area given.

$$
A_{1}=10 \mathrm{ft}^{2} \quad x=? \quad y=?
$$

Perimeters and Areas of Similar Figures
Sample Problem 5: The figures in each pair are similar.
Find the value of missing side.
$\Delta B E V \sim \Delta S E F$
$A_{B E V}=36 \mathrm{~m}^{2} \quad A_{S E F}=12 \mathrm{~m}^{2} \quad \overline{B V}=6 \mathrm{~m} \quad \overline{S F}=$?

Perimeters and Areas of Similar Figures
Sample Problem 5: The figures in each pair are similar.
Find the value of missing side.
$\Delta B E V \sim \Delta S E F$
$A_{B E V}=36 m^{2} \quad A_{S E F}=12 m^{2} \quad \overline{B V}=6 m \quad \overline{S F}=$?

Perimeters and Areas of Similar Figures
Sample Problem 5: The figures in each pair are similar.
Find the value of missing side.
$\Delta B E V \sim \Delta S E F$
$A_{B E V}=36 \mathrm{~m}^{2} \quad A_{S E F}=12 \mathrm{~m}^{2} \quad \overline{B V}=6 \mathrm{~m} \quad \overline{S F}=$?

$$
\begin{aligned}
& \frac{36 m^{2}}{12 m^{2}}=\frac{36 m^{2}}{(\overline{S F})^{2}} \\
& (\overline{S F})^{2}=12 m^{2} \\
& \overline{S F}=\sqrt{12 m^{2}} \\
& \overline{S F}=2 \sqrt{3} m
\end{aligned}
$$

