GeometryCoach.com

Polygons in the Coordinate Plane

Unit 6 Lesson 7

POLYGONS IN THE COORDINATE PLANE

Students will be able to:

Classify a polygon in the coordinate plane by determining the sides lengths and slopes

Key Vocabulary:

- Distance, Slope and Midpoint
- Triangles
- Quadrilaterals

POLYGONS IN THE COORDINATE PLANE

Re-calling Formulas

- Distance between two points $\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{x}_{\mathbf{2}}, \boldsymbol{y}_{2}\right)$

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

- Slope formula given two points

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- Midpoint of two points of a line or a line segment

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

POLYGONS IN THE COORDINATE PLANE

Classification of Triangles

The classification of triangles based on angles is:

All three angles are less than 90°
One of the angles is greater than 90°
One of the angles is equal to 90°
The classification of triangles based on sides is:

All three sides are of different length
Two sides are of same length
All three sides are of same length

POLYGONS IN THE COORDINATE PLANE

Problem 1: Classify the triangle shown in the figure below.

$$
A(1,1) \quad B(4,2) \quad C(5,0)
$$

$$
\begin{aligned}
& \overline{A B}=\sqrt{(4-1)^{2}+(2-1)^{2}}=\sqrt{9+1}=\sqrt{10} \\
& \overline{B C}=\sqrt{(5-4)^{2}+(0-2)^{2}}=\sqrt{1+4}=\sqrt{5} \\
& \overline{A C}=\sqrt{(5-1)^{2}+(0-1)^{2}}=\sqrt{16+1}=\sqrt{17}
\end{aligned}
$$

POLYGONS IN THE COORDINATE PLANE

Classification of Quadrilaterals

- Parallelogram

The opposite sides are parallel and have same slopes

- Rectangle

The diagonals are of same length

- Square

The sides are perpendicular and all the sides are of equal length

- Rhombus

The slopes of diagonals are negative reciprocal of each other and all the sides are of equal length

POLYGONS IN THE COORDINATE PLANE

Problem 2: Classify the quadrilateral shown in the figure below.

Quadrilateral is a square

