

The Pythagorean Theorem and Its Converse

Unit 8 Lesson 1

Students will be able to:

Study the Pythagorean theorem and its converse and use it to identify right triangles

Key Vocabulary:

- Right triangle
- Pythagorean theorem
- Converse of Pythagorean theorem

A Right-angled triangle(named as right triangle) is a triangle which has one of its angles equal to 90 degrees.

There are properties associated with a right triangle.

- A **hypotenuse** is the line segment opposite to the right-angle.
- An **opposite** is the line segment opposite to the angle Θ .
- An adjacent is the line segment next to the angle Θ .
- The sum of three angles is 180° i.e. $\Theta + \Phi + 90^{\circ} = 180^{\circ}$

Pythagorean Theorem

In a right-triangle, the sum of the squares of the lengths of adjacent and opposite is equal to the square of the length of hypotenuse.

$$c^2 = a^2 + b^2$$

Where, c = Hypotenuse a = Opposite

$$b = Adjacent$$

Problem 1: Find the unknown length x in the right triangle shown.

Problem 1: Find the unknown length x in the right triangle shown.

By Pythagorean theorem,

$$c^{2} = a^{2} + b^{2}$$

$$13^{2} = x^{2} + 12^{2}$$

$$x^{2} = 169 - 144$$

$$x^{2} = 25$$

Converse of Pythagorean Theorem

If the sum of the squares of the lengths of adjacent and opposite is equal to the square of the length of hypotenuse, then the triangle is a right triangle.

$$c^2 = a^2 + b^2$$
 $\triangle ABC$ is a right triangle

Where, c = Hypotenusea = Oppositeb = Adjacent

Problem 2: Identify if the triangle shown is a right triangle or not.

Problem 2: Identify if the triangle shown is a right triangle or not.

To show if the triangle is a right triangle, we need to check whether its lengths satisfy the Pythagorean theorem:

 $c^2 = a^2 + b^2$

$$10^2 = 8^2 + 6^2$$

$$100 = 64 + 36$$

$$100 = 100$$

So, the triangle is a **right triangle**.

