

Inequalities in One Triangle

Unit 5 Lesson 6

INEQUALITIES IN ONE TRIANGLE

Students will be able to:

Apply inequalities in one triangle.

Key Vocabulary:

- Angle Side Theorem
- Converse of Angle side Theorem
- Exterior angle Inequality Theorem
- Triangle Inequality Theorem

ANGLE – SIDE THEOREM

"If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side."

- If $\overline{AB} > \overline{BC}$ then $\angle ACB > \angle BAC$.
- If $\overline{AC} > \overline{BC}$ then $\angle ABC > \angle BAC$.
- If $\overline{AC} > \overline{AB}$ then $\angle ABC > \angle ACB$.

Sample Problem 1: Write the angles in order from smallest to largest.

Sample Problem 1: Write the angles in order from smallest to largest.

 $\overline{AB} = 12.13$ is opposite $\angle C$ $\overline{BC} = 10.3$ is opposite $\angle A$ $\overline{AC} = 6.4$ is opposite $\angle B$ $\overline{AC} < \overline{BC} < \overline{AB}$

 $m \angle B < m \angle A < m \angle C$

CONVERSE OF ANGLE – SIDE THEOREM

"If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle." Α If $\angle ACB > \angle BAC$ then $\overline{AB} > \overline{BC}$. $\angle ABC > \angle BAC$ then $\overline{AC} > \overline{BC}$. lf If $\angle ABC > \angle ACB$ then $\overline{AC} > \overline{AB}$. B

Sample Problem 2: Write the sides in order from shortest to longest.

Sample Problem 2: Write the sides in order from shortest to longest.

 \overline{AB} is opposite $m \angle C = 105^{\circ}$ \overline{BC} is opposite $m \angle A = 42^{\circ}$ \overline{AC} is opposite $m \angle B = 33^{\circ}$ $m \angle B < m \angle A < m \angle C$

 $\overline{AC} < \overline{BC} < \overline{AB}$

GeometryCoach.com

EXTERIOR ANGLE INEQUALITY THEOREM

"The measure of an exterior angle of a triangle is greater than the measure of either of its remote interior angles."

B

GeometryCoach.com

Sample Problem 3: Determine the smallest and the largest angles.

Sample Problem 3: Determine the smallest and the largest angles.

Interior angles: $m \angle 5 > m \angle 3 > m \angle 2$

Exterior angles: $m \angle 1 > m \angle 4 > m \angle 6$

Smallest angle: $m \angle 2$

Largest angle: $m \angle 1$

TRIANGLE INEQUALITY THEOREM

"The sum of the lengths of any two sides of a triangle is greater than the length of the third side."

Sample Problem 4: A triangle has one side of length 12 and another of length 8. Identify the possible lengths of the third side.

Sample Problem 4: A triangle has one side of length 12 and another of length 8. Identify the possible lengths of the third side.

x = 12	y = 8	4 < z < 20
x + y > z	x + z > y	y + z > x
12 + 8 > z	12 + z > 8	8 + z > 12
20 > z	z > 8 - 12	z > 12 - 8
	z > -4	z > 4

