INEQUALITIES IN ONE TRIANGLE

Students will be able to:
Apply inequalities in one triangle.

Key Vocabulary:

• Angle – Side Theorem
• Converse of Angle – side Theorem
• Exterior angle Inequality Theorem
• Triangle Inequality Theorem
INEQUALITIES IN ONE TRIANGLE

ANGLE – SIDE THEOREM

“If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side.”

- If $AB > BC$ then $\angle ACB > \angle BAC$.
- If $AC > BC$ then $\angle ABC > \angle BAC$.
- If $AC > AB$ then $\angle ABC > \angle ACB$.

A

\[\text{B} \]

\[\text{C} \]
Sample Problem 1: Write the angles in order from smallest to largest.
Sample Problem 1: Write the angles in order from smallest to largest.

\[AB = 12.13 \] is opposite \(\angle C \)

\[BC = 10.3 \] is opposite \(\angle A \)

\[AC = 6.4 \] is opposite \(\angle B \)

\[AC < BC < AB \]

\[m\angle B < m\angle A < m\angle C \]
CONVERSE OF ANGLE – SIDE THEOREM

“If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.”

- If $\angle ACB > \angle BAC$ then $\overline{AB} > \overline{BC}$.
- If $\angle ABC > \angle BAC$ then $\overline{AC} > \overline{BC}$.
- If $\angle ABC > \angle ACB$ then $\overline{AC} > \overline{AB}$.
Sample Problem 2: Write the sides in order from shortest to longest.
Sample Problem 2: Write the sides in order from shortest to longest.

\(AB \) is opposite \(m\angle C = 105^\circ \)

\(BC \) is opposite \(m\angle A = 42^\circ \)

\(AC \) is opposite \(m\angle B = 33^\circ \)

\(m\angle B < m\angle A < m\angle C \)

\(AC < BC < AB \)
INEQUALITIES IN ONE TRIANGLE

EXTERIOR ANGLE INEQUALITY THEOREM

“The measure of an exterior angle of a triangle is greater than the measure of either of its remote interior angles.”

\[\angle ABD > \angle BAC \]

and

\[\angle ABD > \angle BCA \]
Sample Problem 3: Determine the smallest and the largest angles.
Sample Problem 3: Determine the smallest and the largest angles.

Interior angles: $m\angle 5 > m\angle 3 > m\angle 2$

Exterior angles: $m\angle 1 > m\angle 4 > m\angle 6$

Smallest angle: $m\angle 2$

Largest angle: $m\angle 1$
INEQUALITIES IN ONE TRIANGLE

TRIANGLE INEQUALITY THEOREM

“The sum of the lengths of any two sides of a triangle is greater than the length of the third side.”

\[\overline{AB} + \overline{BC} > \overline{AC} \]

\[\overline{AC} + \overline{BC} > \overline{AB} \]

\[\overline{AB} + \overline{AC} > \overline{BC} \]
Sample Problem 4: A triangle has one side of length 12 and another of length 8. Identify the possible lengths of the third side.
Sample Problem 4: A triangle has one side of length 12 and another of length 8. Identify the possible lengths of the third side.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 12)</td>
<td>(y = 8)</td>
<td>(4 < z < 20)</td>
</tr>
<tr>
<td>(x + y > z)</td>
<td>(x + z > y)</td>
<td>(y + z > x)</td>
</tr>
<tr>
<td>(12 + 8 > z)</td>
<td>(12 + z > 8)</td>
<td>(8 + z > 12)</td>
</tr>
<tr>
<td>(20 > z)</td>
<td>(z > 8 - 12)</td>
<td>(z > 12 - 8)</td>
</tr>
<tr>
<td></td>
<td>(z > -4)</td>
<td>(z > 4)</td>
</tr>
</tbody>
</table>