

Midsegments of Triangles

Unit 5 Lesson 1

Students will be able to:

Use properties of triangle midsegments.

Key Vocabulary:

- Midsegment of a Triangle
- Midsegment Triangle
- Triangle Midsegment Theorem

is a segment that joins the midpoints of two sides of the triangle.

Midsegments:

$$\overline{AC}$$
 \overline{BC} \overline{AB}

Properties:

- 1. It is always parallel to the third side.
 - $\overline{AC} \parallel \overline{XZ}$ $\overline{BC} \parallel \overline{XY}$ $\overline{AB} \parallel \overline{YZ}$

2. Its length is half the length of the third side.

$$m_{\overline{AC}} = \frac{1}{2}m_{\overline{XZ}}$$
 $m_{\overline{BC}} = \frac{1}{2}m_{\overline{XY}}$ $m_{\overline{AB}} = \frac{1}{2}m_{\overline{YZ}}$

GeometryCoach.com

MIDSEGMENT TRIANGLE is a triangle formed by the midsegments of a triangle.

 ΔABC

TRIANGLE MIDSEGMENT THEOREM

"In a triangle, the segment joining the midpoints of any two sides will be parallel to the third side and half its length."

Sample Problem 1: Given: $\overline{JK} = 10$, $\overline{DE} = 6.5$, $\overline{EL} = 3.7$. Find:

- $A. \overline{KD}$
- B. \overline{DJ}
- C. \overline{DF}
- D. \overline{JL}
- $E. \overline{KF}$
- $F. \overline{FL}$

Sample Problem 1: Given: $\overline{JK} = 10$, $\overline{DE} = 6.5$, $\overline{EL} = 3.7$. Find:

A.
$$\overline{KD} = \frac{1}{2}\overline{JK} = \frac{1}{2}(10) = \overline{KD} = 5$$

B. $\overline{DJ} = \frac{1}{2}\overline{JK} = \frac{1}{2}(10) = \overline{DJ} = 5$
C. $\overline{DF} = \overline{EL} = \overline{DF} = 3.7$
D. $\overline{JL} = 2 \cdot \overline{EL} = 2 \cdot 3.7 = \overline{JL} = 7.4$
E. $\overline{KF} = \overline{DE} = \overline{KF} = 6.5$
F. $\overline{FL} = \overline{DE} = \overline{FL} = 6.5$

Sample Problem 2: Find the value of *n*.

Β.

Sample Problem 2: Find the value of *n*.

Β.

$$64 = 2n$$
$$n = 32$$

Sample Problem 3: In the house's roof, as shown below, find the height, *x*, of the support.

Sample Problem 3: In the house's roof, as shown below, find the height, x, of the support.

