\qquad Date: \qquad

Write and Graph Equations of Lines

Guided Notes: STUDENT EDITION
Equations of Lines and Slope
Slope intercept form:

Slope Formula:

Graphing and Types of Slopes: Graph the following lines.

$\mathrm{y}=2 \mathrm{x}+4$	$y=-\frac{1}{4} x-2$	$y=-3$	$x=5$
$\mathrm{m}=\ldots \quad \mathrm{b}=$	$\mathrm{m}=\ldots \quad \mathrm{b}=$	Acronym:	Acronym:
	H	H	
type of slope:	type of slope:	type of slope:	type of slope:

For each equation, rewrite in slope-intercept form and state the $\mathrm{m} \& \mathrm{~b}$ values.

$3 \mathrm{y}-8 \mathrm{x}=2$	$9 \mathrm{x}=4 \mathrm{y}-11$	$3 x-\frac{1}{4} y=6$
$\mathrm{m}=\ldots \quad \mathrm{b}=$	$\mathrm{m}=\ldots \quad \mathrm{b}=$	$\mathrm{m}=\ldots \mathrm{b}=$

\qquad Date: \qquad

Use Parallel Lines and Transversals

Guided Notes: STUDENT EDITION

Special Types of Lines:

TYPE OF LINE	PARALLEL LINES	PERPENDICULAR LINES
DEFINITION		
SLOPES OF		
THESE TYPE OF		
LINES		

State the negative reciprocal of the given slope.

1. $\mathrm{m}=\frac{1}{4}$ \square 2. $\mathrm{m}=-6$
2. $\mathrm{m}=-\frac{2}{3}$ \square 4. $\mathrm{m}=9$ \square

Find the slope of the given lines.
j passes through
$(0,3)$ and $(3,1)$
m passes through
k passes through
$(-2,7)$ and $(-6,1)$
$(-4,-3) \&(0,3)$

Make some conclusions.

Make a quick sketch to see what parallel and perpendicular lines look like.

\qquad
\qquad
\qquad

Use Parallel Lines and Transversals

Guided Notes: STUDENT EDITION

Write the equation of a line in slope intercept form:
Steps: 1. Ask yourself "What two letters do I need to write the equation of a line?"
2. Identify which letters you need to still find.
3. If you need m , plug the points into the slope formula.
4. If you need b, plug m and an ordered pair (x, y) into the slope intercept formula and solve for b.
5. Write the equation of a line with the new m and b.

TYPE I: Write the equation of the line that passes through the given y-intercept and given slope.

1. $m=3, b=-3$
2. $\mathrm{m}=\frac{6}{7}, \mathrm{~b}=15$

TYPE II: Write the equation of the line that passes through the given point and given slope.
3. Passes through $(2,3)$ and slope is 5.
4. Passes through ($6,-5$) and slope is $-\frac{1}{3}$
\qquad Date: \qquad

Prove Lines Parallel

Guided Notes: STUDENT EDITION

5. Passes through (5, -2) and slope is 0.

Remember: You can always check the b by graphing. Plot the point and move by counting the slope till you cross the y -axis.

Type III: Write the equation of a line given two points.
6. Passes through (4, -3) and (3, -6)
7.

TYPE IV: Write the equation of a line given two points and must be parallel or perpendicular to another line.
8. Passes through (3, 2)

Parallel to $y=-\frac{1}{3} x-1$
9. Passes through $(4,0)$

Perpendicular to $2 \mathrm{x}+\mathrm{y}=1$
\qquad Date: \qquad

Prove Lines Parallel

Guided Notes: STUDENT EDITION

Practice: Are these equations parallel, perpendicular, or neither?

1. I: $y=\frac{1}{3} x-2 \quad h: 6 y=2 x+12$
2. $q: 4 x-2 y=6$
$w: 2 x+4 y=6$
3. Which lines are //? Which are \perp ? A graph may help.

$$
\begin{aligned}
& x=4 \\
& y=-4 \\
& y=4 x
\end{aligned}
$$

