CLASSIFYING POLYGONS

Unit 1 Lesson 6

Classifying Polygons

Students will be able to:

Identify the 2-dimensional shapes based on their properties.

Key Vocabulary

- Polygons
- Triangles
- Quadrilaterals
- Pentagons and Hexagons
- Other Polygons

Classifying Polygons

A polygon is a closed plane shape formed by three or more line segments.

- A polygon is said to be regular, if all the side lengths are equal.
- A polygon is said to be irregular, if all the side lengths are not equal.
- Triangle, Quadrilaterals, Pentagons etc. are all polygons.

Classifying Polygons

A triangle is a polygon having exactly three sides and three
angles inside. The angle sum of a triangle is 180°.

- A triangle having all the sides length equal is called an equilateral triangle.

Equilateral

- A triangle having two sides of equal length is called an isosceles triangle.
- A triangle having no side of equal length is called a scalene triangle.
- A triangle having one angle equal to 90° is called a right triangle

Isosceles

Right triangle

Classifying Polygons

A quadrilateral is a polygon having exactly four sides and four angles inside. The angle sum of a quadrilateral is 360°.

- A quadrilateral having all the sides length equal and all the angles equal to 90° is called a square.
- A square having the diagonals meeting at a right angle is called a rhombus.
- A quadrilateral having two opposite

Square sides of equal length and all the angles equal to 90° is called a rectangle.

Classifying Polygons

- A quadrilateral having two opposite sides of equal length and none of the angles equal to 90° is called a parallelogram.

Parallelogram

- A quadrilateral having two parallel sides and two non-parallel sides is called a trapezium.

Classifying Polygons

A pentagon is a polygon having exactly five sides and five angles inside. The angle sum of a pentagon is 540°.

A hexagon is a polygon having exactly six sides and six angles inside. The angle sum of a pentagon is $\mathbf{7 2 0}$.

Classifying Polygons

The other polygons can be named based on the number sides they have. The table below lists the names of these polygons.

Name	Number of sides
Heptagon	7
Octagon	8
Nonagon	9
Decagon	10
Hendecagon	11
Dodecagon	12

Classifying Polygons

There is a formula relating the number of sides of a polygon to the sum of the interior angles of a polygon which is very useful. It is given as:

$$
\text { Sum of angles }=180^{\circ}(n-2)
$$

where, $\mathrm{n}=$ number of sides of a polygon

Classifying Polygons

Problem 1:

What is the sum of the interior angles of a decagon?

A decagon has 10 sides, so put $\mathrm{n}=10$

$$
\text { Sum of angles }=180^{\circ}(n-2)=180^{\circ}(10-2)
$$

or,
Sum of angles in a decagon $=180^{\circ} \times 8=1440^{\circ}$

