\qquad Period: \qquad Date: \qquad

UNIT 4 - Congruent Triangles TEST

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. If $B C D E$ is congruent to $O P Q R$, then $\overline{D E}$ is congruent to ?
a. $\overline{P Q}$
b. $\overline{O R}$
c. $\overline{O P}$
d. $\overline{Q R}$
\qquad 2. Use the information given in the diagram. Tell why $\overline{A C} \cong \overline{A C}$ and $\angle B C A \cong \angle D A C$.

a. Reflexive Property, Given
b. Transitive Property, Reflexive Property
c. Given, Reflexive Property
d. Reflexive Property, Transitive Property
\qquad 3. $\angle A B C \cong$ \qquad

a. $\angle P M N$
b. $\triangle N P M$
c. $\angle N M P$
d. $\angle M N P$
4. The two triangles are congruent as suggested by their appearance. Find the value of c. The diagrams are not to scale.

a. 4
b. 5
c. 3
d. 38
\qquad Period: \qquad Date: \qquad

UNIT 4 - Congruent Triangles TEST

\qquad 5. Given $\triangle A B C \cong \triangle P Q R, m \angle B=3 v+4$, and $m \angle Q=8 v-6$, find $m \angle B$ and $m \angle Q$.
a. 22
b. 11
c. 10
d. 25
6. Justify the last two steps of the proof.

Given: $\overline{R S} \cong \overline{U T}$ and $\overline{R T} \cong \overline{U S}$
Prove: $\overline{\triangle R S T \cong \triangle U T S}$

Proof:

1. $\overline{R S} \cong \overline{U T}$
2. Given
3. $\overline{R T} \cong \overline{U S}$
4. Given
5. $\overline{S T} \cong \overline{T S}$
3.?
6. $\triangle R S T \cong \triangle U T S$
7. ?
a. Symmetric Property of \cong; SSS
c. Reflexive Property of \cong; SSS
b. Reflexive Property of \cong; SAS
d. Symmetric Property of \cong; SAS
8. State whether $\triangle A B C$ and $\triangle A E D$ are congruent. Justify your answer.

a. yes, by either SSS or SAS
b. yes, by SSS only
c. yes, by SAS only
d. No; there is not enough information to conclude that the triangles are congruent.
9. In each pair of triangles, parts are congruent as marked. Which pair of triangles is congruent by ASA?
a.

c.

\qquad Period: \qquad Date: \qquad

UNIT 4 - Congruent Triangles TEST

b.

9. From the information in the diagram, can you prove $\triangle F D G \cong \triangle F D B$? Explain.

a. yes, by ASA
c. yes, by SAS
b. yes, by AAA
d. no
10. What else must you know to prove the triangles congruent by ASA? By SAS?

a. $\angle A C D \cong \angle C A B ; \overline{A B} \cong \overline{C D}$
b. $\angle A C D \cong \angle C A B ; \overline{A D} \cong \overline{B C}$
c. $\angle A D C \cong \angle C A B ; \overline{A D} \cong \overline{B C}$
d. $\angle A C D \cong \angle C A B ; \overline{A D} \cong \overline{A C}$
11. Name the theorem or postulate that lets you immediately conclude $\triangle A B D \cong \triangle C B D$.

a. SAS
b. ASA
c. AAS
d. none of these
\qquad
\qquad
\qquad

UNIT 4 - Congruent Triangles TEST

12. Supply the missing reasons to complete the proof.

Given: $\angle Q \cong \angle T$ and $\overline{Q R} \cong \overline{T R}$
Prove: $\overline{P R} \cong \overline{S R}$

Statement	Reasons
1. $\angle Q \cong \angle T$ and	1. Given
$\overline{Q R} \cong \overline{T R}$	
2. $\angle P R Q \cong \angle S R T$	2. Vertical angles are congruent.
3. $\triangle P R Q \cong \triangle S R T$	3. ? ?
4. $\overline{P R} \cong \overline{S R}$	4. $?$

a. ASA; Substitution
c. AAS; CPCTC
b. SAS; CPCTC
d. ASA; CPCTC
13. Supply the reasons missing from the proof shown below.

Given: $\overline{A B} \cong \overline{A C}, \angle B A D \cong \angle C A D$
Prove: $\overline{A D}$ bisects $\overline{B C}$

\qquad
\qquad Date: \qquad

UNIT 4 - Congruent Triangles TEST

Statements	Reasons
1. $\overline{A B} \cong \overline{A C}$	1. Given
2. $\angle B A D \cong \angle C A D$	2. Given
3. $\overline{A D} \cong \overline{A D}$	3. Reflexive Property
4. $\triangle B A D \cong \triangle C A D$	4. $\frac{?}{?}$
5. $\overline{B D} \cong \overline{C D}$	5. $\bar{?}$
6. $\overline{A D}$ bisects $\overline{B C}$	6. Def. of segment bisector

a. ASA; CPCTC
c. SSS; Reflexive Property
b. SAS; Reflexive Property
d. SAS; CPCTC
14. The octagon in the figure is equiangular and $\overline{A B} \cong \overline{A C}$. Find $m \angle A C B$.

a. 135
b. 45
c. 30
d. 90
15. In an A-frame house, the two congruent sides extend from the ground to form a 34° angle at the peak. What angle does each side form with the ground?
a. 156
b. 146
c. 73
d. 78
16. What is the measure of the vertex angle of an isosceles triangle if one of its base angles measures 42° ?
a. 69°
b. 84°
c. 138°
d. 96°
17. Find the value of x. The diagram is not to scale.

a. $x=23$
b. $x=40$
c. $x=13$
d. none of these
18. Two sides of an equilateral triangle have lengths $2 x-2$ and $3 x-6$. Which of $10-x$ or $6 x+5$ could be the length of the third side?
a. neither $10-x$ nor $6 x+5$
c. both $10-x$ and $6 x+5$
b. $10-x$ only
d. $6 x+5$ only
\qquad Period: \qquad Date: \qquad

UNIT 4 - Congruent Triangles TEST

19. Is there enough information to conclude that the two triangles are congruent? If so, what is a correct congruence statement?

a. Yes; $\triangle C A B \cong \triangle D A C$.
b. Yes; $\triangle A C B \cong \triangle A D C$.
c. Yes; $\triangle A B C \cong \triangle A C D$.
d. No, the triangles cannot be proven congruent.
20. $\overline{C B}$ is perpendicular to $\overline{A D}$ at \underline{B} between A and $D . \angle D A C \cong \angle A D C$. By which of the five congruence statements, $\mathrm{HL}, \mathrm{AAS}, \mathrm{ASA}, \mathrm{SAS}$, and SSS, can you conclude that $\triangle A B C \cong \triangle D B C$?
a. HL, AAS, ASA, and SAS
c. HL and ASA
b. HL, AAS, and ASA
d. HL, AAS, ASA, SAS, and SSS
21. Which overlapping triangles are congruent by AAS?

a. $\triangle A D C \approx \triangle B B C$
b. $\triangle A B E \cong \triangle C D A$
c. $\triangle A B E \cong \triangle D E A$
d. $\triangle A D C \cong \triangle E D A$
22. The sides of an isosceles triangle have lengths $2 x+4, x+8$. The base has length $5 x-2$. What is the length of the base?
a. $\quad 18$
c. 12
b. 4
d. cannot be determined

Short Answer

23. For the two quadrilaterals below, $\angle I \cong \angle M, \angle I J K \cong \angle M J K, \angle L K J \cong \angle N K J$, and $\angle L \cong \angle N$. Complete this congruence statement for the two quadrilaterals.

$$
L K J I \cong __
$$

\qquad Period: \qquad Date: \qquad

UNIT 4 - Congruent Triangles TEST

24. Based on the given information, can you conclude that $\triangle Q R S \cong \triangle T U V$? Explain.

Given: $\overline{Q R} \cong \overline{T U}, \overline{Q S} \cong \overline{T V}$, and $\angle R \cong \angle U$
25. Explain how you can use $\mathrm{SSS}, \mathrm{SAS}$, ASA, or AAS with CPCTC to prove that $\angle D \cong \angle B$.

26. Is $\triangle P Q S \cong \triangle R Q S$ by HL? If so, name the legs that allow the use of HL.

27. Separate and redraw $\triangle A B C$ and $\triangle C D A$. Identify any common angles or sides.

28. Name a pair of triangles in the figure and state whether they are congruent by SSS, SAS, ASA, AAS, or HL.
\qquad
\qquad Date: \qquad

UNIT 4 - Congruent Triangles TEST

Given: $\overline{N P} \cong \overline{O M}, \overline{M N} \cong \overline{P O}$

29. Is there enough information to prove the two triangles congruent? If yes, write the congruence statement and name the postulate you would use. If no, write not possible and tell what other information you would need.

30. Can you conclude the triangles are congruent? Justify your answer.

Essay

31. Write a paragraph proof to show that $\triangle A B C \cong \triangle D E C$.

Given: $\overline{A C} \cong \overline{D C}$ and $\overline{B C} \cong \overline{C E}$

\qquad Period: \qquad Date: \qquad

UNIT 4 - Congruent Triangles TEST

Answer Section

MULTIPLE CHOICE

1.	ANS: D
2.	ANS: A
3.	ANS: D
4.	ANS: C
5.	ANS: C
6.	ANS: C
7.	ANS: A
8.	ANS: B
9.	ANS: A
10.	ANS: B
11.	ANS: A
12.	ANS: D
13.	ANS: D
14.	ANS: B
15.	ANS: C
16.	ANS: D
18.	ANS: B
19.	ANS: B
20.	ANS: A
21.	ANS: A
22.	ANS: A

SHORT ANSWER

23. ANS:

NKJM
24. ANS:

Answers may vary. Sample: Two pairs of sides are congruent, but the angle is not included. There is no SSA Congruence Theorem, so you cannot conclude $\triangle Q R S \cong \triangle T U V$ with the information given.
25. ANS:

Answers may vary. Sample: Because the two triangles share the side $\overline{A C}$, they are congruent by SAS. Then $\angle D \cong \angle B$ by CPCTC.
26. ANS:

Yes, $\overline{Q S}$ (in each triangle)
27. ANS:
\qquad
\qquad Date: \qquad
UNIT 4 - Congruent Triangles TEST

$\overline{A C}$ is the only common side.
28. ANS:
$\triangle M N P \cong \triangle P O M$ by SSS
29. ANS:

Yes; $\triangle P Q S \cong \triangle R Q S$ by SAS.
30. ANS:

Yes, the diagonal segment is congruent to itself, so the triangles are congruent by SAS.

ESSAY

31. ANS:
[4] Answers may vary. Sample: You are given that $\overline{A C} \cong \overline{D C}$ and $\overline{B C} \cong \overline{C E}$. Vertical angles $B C A$ and $E C D$ are congruent, so $\triangle A B C \cong \triangle D E C$ by SAS.
[3] correct idea, some details inaccurate
[2] correct idea, not well organized
[1] correct idea, one or more significant steps omitted
