

Unit 1 Lesson 2

Students will be able to:

- Draw points, lines, line segments, rays, and planes.
- Identify points, lines, line segments, rays and planes.

Know precise definitions of line, and line segment, based on the undefined notions of point, line.

Key Vocabulary: A line, A point, A line segment, A plane, Intersection.

 In geometry, some words, such as point, line, and plane, are <u>undefined terms</u>. Although these words are not formally defined, it is important to have general agreement about what each word means.

- <u>A point</u> has no dimension.
- It is usually represented by a small dot and named by a capital letter.

- <u>A line</u> extends in one dimension.
- It is usually represented by a straight line with two arrowheads to indicate that the line extends without end in two directions, and is named by two points on the line or a lowercase script letter.

- <u>A plane</u> extends in two dimensions.
- It is usually represented by a shape that looks like a tabletop or wall.
- You must imagine that the plane extends without end, even though the drawing of a plane appears to have edges, and is named by a capital script letter or 3 noncollinear points.

- <u>A line segment</u> is a set of points and has a specific length i.e. it does not extend indefinitely.
- It has no thickness or width, is usually represented by a straight line with no arrowheads to indicate that it has a fixed length, and is named by two points on the line segment with a line segment symbol above the letters.

 A ray is a set of points and extends in one dimension in one direction (not in two directions). It has no thickness or width, is usually represented by a straight line with one arrowhead to indicate that it extends without end in the direction of the arrowhead, and is named by two points on the ray with a ray symbol above the letters

• **<u>Collinear points</u>** are points that lie on the same line.

• **<u>Coplanar points</u>** are points that lie on the same plane.

Sample Problem 1: Use the figure to name each of the following.

Line Points Collinear points Non collinear points

Sample Problem 1: Use the figure to name each of the following.

Line \overleftrightarrow{AB} Points A, B, C and DCollinear points A, BNon collinear points A, C, D

Sample Problem 1: Use the figure to name each of the following.

Line segment Points

Sample Problem 1: Use the figure to name each of the following.

Line segment \overline{KL} Points K, L

Sample Problem 1: Use the figure to name each of the following.

Plane Ray Points Coplanar points Non coplanar points

Sample Problem 1: Use the figure to name each of the following.

Plane *STO* Ray \overrightarrow{IR} Points *S*, *T*, *O*, *R* and *I* Coplanar points *S*, *T*, *O* Non coplanar points *R*, *I*

- Two or more geometric figures intersect, if they have one or more points in common.
- The intersection of the figures is the set of points the figures have in common.

- **Postulate 1-1** Through any two points there is exactly one line.
- **Postulate 1-2** If two distinct lines intersect, then they intersect in exactly one point.
- **Postulate 1-3** If two distinct planes intersect, then they intersect in exactly one line.
- **Postulate 1-4** Through any three non collinear points there is exactly one plane.

Sample Problem 2: Refer to each figure.

Name the intersection of line \overrightarrow{QZ} and segment \overline{WU} .

Sample Problem 2: Refer to each figure.

Name the intersection of line \overrightarrow{QZ} and segment \overline{WU} .

Point T

Sample Problem 2: Refer to each figure.

Name the intersection of plane π and line \overleftarrow{DB} .

Sample Problem 2: Refer to each figure.

Name the intersection of plane π and line \overleftarrow{DB} .

Point S

Sample Problem 2: Refer to each figure.

Name the two opposite rays at point T.

Sample Problem 2: Refer to each figure.

Name the two opposite rays at point T.

 \overrightarrow{TQ} and \overrightarrow{TZ}

Sample Problem 2: Refer to each figure.

What is another name for plane π ?

Sample Problem 2: Refer to each figure.

What is another name for plane π ?

Plane **TSU**

Sample Problem 2: Refer to each figure.

Name the intersection of plane π and plane τ .

Sample Problem 2: Refer to each figure.

Name the intersection of plane π and plane τ .

Line **BS**

Sample Problem 2: Refer to each figure.

What is another name for plane π ?

Sample Problem 2: Refer to each figure.

What is another name for plane π ?

Plane *LMG*

Sample Problem 2: Refer to each figure.

Name the intersection of line \overrightarrow{MG} and line \overrightarrow{BS} .

Sample Problem 2: Refer to each figure.

Name the intersection of line \overrightarrow{MG} and line \overrightarrow{BS} .

Point C

Sample Problem 2: Refer to each figure.

Name a point that is collinear with *M* and *C*.

Point **G**

Sample Problem 2: Refer to each figure.

Name the intersection of plane π and line \overleftarrow{LC} .

Sample Problem 2: Refer to each figure.

Name the intersection of plane π and line \overleftarrow{LC} .

Point C

Sample Problem 2: Refer to each figure.

Name the intersection of plane τ and line \overrightarrow{LC} .

Sample Problem 2: Refer to each figure.

Name the intersection of plane τ and line \overrightarrow{LC} .

Point *L*

Sample Problem 2: Refer to each figure.

Name a point that is coplanar with *H* and *L*.

Sample Problem 2: Refer to each figure.

Name a point that is coplanar with H and L.

Point **P**

Sample Problem 2: Refer to each figure.

Name the opposite ray of ray \overrightarrow{CB} .

Sample Problem 2: Refer to each figure.

GeometryCoach.com

- **a.** Plane *ABS* contains lines \overleftarrow{AB} , \overleftarrow{CD} , and \overleftarrow{AK} .
 - Lines \overrightarrow{AB} and \overrightarrow{CD} intersect in point G.
 - Lines \overleftarrow{CD} and \overleftarrow{AK} intersect in point S.
 - Lines \overrightarrow{AB} and \overrightarrow{AK} intersect in point A.

- **a.** Plane ABS contains lines \overrightarrow{AB} , \overrightarrow{CD} , and \overrightarrow{AK} .
 - Lines \overrightarrow{AB} and \overrightarrow{CD} intersect in point G.
 - Lines \overleftarrow{CD} and \overrightarrow{AK} intersect in point S.
 - Lines \overrightarrow{AB} and \overrightarrow{AK} intersect in point A.

- **b**. Plane π contains line \overrightarrow{AB} and point L.
 - Plane τ contains line \overleftarrow{EF} and point S.
 - Lines \overrightarrow{AB} and \overrightarrow{EF} intersect in point H.
 - The intersection of plane π and plane τ is line \overleftarrow{LU} .

- **b**. Plane π contains line \overrightarrow{AB} and point L.
 - Plane τ contains line \overleftarrow{EF} and point S.
 - Lines \overrightarrow{AB} and \overrightarrow{EF} intersect in point H.
 - The intersection of plane π and plane τ is line \overleftarrow{LU} .

- c. Plane π and plane τ do not has intersect.
 - Plane ε intersect plane π in line \overleftarrow{BC} .
 - Plane ε intersect plane τ in line \overleftarrow{ER} .

- c. Plane π and plane τ do not has intersect.
 - Plane ε intersect plane π in line \overrightarrow{BC} .
 - Plane ε intersect plane τ in line \overleftarrow{ER} .

