POLYGONS IN THE COORDINATE PLANE Guided Notes

Re-calling Formulas

• Distance between two points (x_1, y_1) and (x_2, y_2)

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

• Slope formula given two points

$$\frac{y_2 - y_1}{x_2 - x_1}$$

Midpoint of two points of a line or a line segment

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Classification of Triangles

The classification of triangles based on angles is:

Acute

All three angles are less than 90°

Obtuse

One of the angles is greater than 90°

Right

One of the angles is equal to 90°

The classification of triangles based on **sides** is:

Scalene

All three sides are of different length

Isosceles

Two sides are of same length

Equilateral

All three sides are of same length

Name: ______ Period: _____ Date: _____

POLYGONS IN THE COORDINATE PLANE Guided Notes

Problem 1: Classify the triangle shown in the figure below.

el and have same slopes
el and have same slopes
el and have same slopes
of same length
all the sides are of equal length

The slopes of diagonals are negative reciprocal of each other and all the sides are of equal length

______Period: ______ Date: _____ Name: _____

Period: _____ Da POLYGONS IN THE COORDINATE PLANE Guided Notes

Problem 2: Classify the quadrilateral shown in the figure below.

