Review: Classifying Triangles

Parts of a Triangle:

Triangle – a three-sided polygon

Name –

Sides –

Vertices -

Angles -

Classifying Triangles by Angles:

Acute Δ

Obtuse Δ

Right Δ

Equiangular Δ -

Classifying Triangles by Sides:

Scalene Δ

Isosceles Δ

Equilateral Δ

Name:	Period:	Date:

Example #1: Identify the indicated type of triangle in the figure.

a.) isosceles triangles

Example #2: Find *x* and the measure of each side of equilateral triangle *RST*.

Example #3: Find *x*, *JM*, *MN*, and *JN* if ΔJMN is an isosceles triangle *M* with $\overline{JM} \cong \overline{MN}$.

2

Ν

x - 2

Name:	Period:	Date:
Review: <u>A</u> 1	ngles of Tria	ngles
Angle Sum Theorem:		x
• The sum of the measures of the a	angles of a	
is		w Y
Example #1: Find the missing angle mea	asures.	
a.)	b.)	
43* 79*	3	1 4 2 50°
74° 3		70°
Third Angle Theorem:		
 If two angles of one triangle are 		to two angles of a second
triangle, then the third angles of th	ne triangles a	re

Name:		Period:	Date:
Exter	or Angle Theorem:		
•	An exterior angle is formed by one	side of a	_and the extension
	of another		
•	Remote interior angles are the ang	les of a triangle that are not	
	to a given ang	le.	
•	The measure of an exterior angle o	of a triangle is	to the sum of the
	measures of the two	interior angles.	

Example #2: Find the measure of each of the following angles.

Name:	Period:	Date:	
Rev	view: Congruent Triangles		
Congruent Triangles: triangles	that are the same	and	
 Each triangle has three 	and three		
 If all of the corresponding parts of two triangles are, 			
then the triangles are			
B	F Congruent To	riangles:	

Corresponding Congruent Angles:

Corresponding Congruent Sides:

Definition of Congruent Triangles (CPCTC):

- Two triangles are congruent if and only if their corresponding parts are
- *CPCTC* Corresponding parts of congruent triangles are congruent

Name: ______ Period: _____ Date:

Example #1: In the following figure, *QR* = 12, *RS* = 23, *QS* = 24, *RT* = 12,

TV = 24, and *RV* = 23.

Name the corresponding congruent angles and sides.

Name the congruent triangles.

Properties of Triangle Congruence:

<u>Reflexive</u>	<u>Symmetric</u>	<u>Transitive</u>
$\int_{J}^{K} \int_{J}^{L} \int_{J}^{K} \int_{J}^{L}$	$\int_{J}^{K} L \int_{P}^{Q} R$	$\int_{J}^{K} \int_{P}^{Q} \int_{Q}^{R} \int_{X}^{Y} \int_{X}^{Z}$

Example #2: If $\Delta WXZ \cong \Delta STJ$, name the congruent angles and congruent sides.

Angles -

Sides –

Name:	Period:	Date:

Review: Proving Congruence - SSS, SAS

 Side-Side Congruence:
 If the ______ of one triangle are congruent to the sides of a second triangle, then the triangles are ______.

 Abbreviation:
 Z

 Side-Angle-Side Congruence:
 If two sides and the included ______ of one triangle are congruent to two ______ and the included angle of another triangle, then the triangles are ______.

 Abbreviation:
 B

Example #1: Write a proof.

Given: $\overline{EI} \cong \overline{FH}$, $\overline{FE} \cong \overline{HI}$, and *G* is the midpoint of both \overline{EI} and \overline{FH} .

Prove: $\Delta FEG \cong \Delta HIG$

Example #2: Write a proof.

Given: \overline{DE} and \overline{BC} bisect each other.

Example #3: Write a proof.

Given: $\overline{AB} \cong \overline{AC}$ and $\overline{BY} \cong \overline{CY}$

Prove: $\triangle BYA \cong \triangle CYA$

Review: Proving Congruence - ASA, AAS

Angle-Side-Angle Congruence: If two _____ and the included ______ of one triangle are congruent to two angles and the included side of another triangle, then the triangles are _____.

Abbreviation:

Angle-Angle-Side Congruence: If two angles and a non-included side of one triangle are congruent to the corresponding two ______ and a side of a second triangle, then the two triangles are

Abbreviation:

•

Example #1: Write a two-column proof.

Given: \overline{AB} bisects $\angle CAD$ $\angle 1 \cong \angle 2$

Prove: $\triangle CAB \cong \triangle DAB$

#2: Write a two-column proof.

Given: $\overline{AD} \mid \mid \overline{CB}$ $\angle A \cong \angle C$

Prove: $\triangle DGB \cong \triangle EGC$

Example #3: Write a two-column proof.

Given:
$$\angle V \cong \angle S$$

 $\overline{TV} \cong \overline{OS}$

Prove: $\overline{VR} \cong \overline{SR}$

Name:	Period:	Date:
Isosceles	<u>Triangles</u>	
Isosceles Triangle: A triangle with at least	sides congr	uent.

Example #1: If $\overline{DE} \cong \overline{CD}$, $\overline{BC} \cong \overline{AC}$, and $m \angle CDE = 120$, what is the measure of $\angle BAC$?

Name:	Period:	Date:
<u>Theorem</u> : If two angles of a	a are congruent, then	₽ the
sides opposite those angles	are	
Ex:		E F
Example #2:		
	a.) Name all of the congruent angles.b.) Name all of the congruent segment	nts.
<u>Corollary</u> : A triangle is	if and only if it	is
Corollary: Each angle of an	n equilateral triangle measures	-·
Example #3: ΔEFG is equil	ateral, and \overline{EH} bisects $\angle E$.	
<i>E</i> a.)	Find $m \angle 1$ and $m \angle 2$.	
F H G $b.)$	Find x.	