Find the unknown sides or the angles in the questions below, using the classification of polygons. **1.** The triangle ABC is equilateral and angle $A = 60^{\circ}$: **2.** The square JKLM is a rhombus and JK = 4 cm: LM = _____ ; Angle K = _____ **3.** The parallelogram ABCD has angle $A = 80^{\circ}$, angle $B = 100^{\circ}$, angle $= 80^{\circ}$: Angle D = _____ **4.** An isosceles triangle DEF with angle $D = 90^{\circ}$, angle $E = 45^{\circ}$: **Angle F** = _____ Name: _____ Period: _____ Date: _____ Classifying Polygons Assignment ### Match the columns: | Trape zium | |--------------------| | Hexagon | | Paralle logram | | Right triangle | | Isosceles triangle | | Rhombus | | Pentagon | | Rectangle | | Name: | Per | riod: [| Date: | |-------|------|---------|-------| | Nume | 1 Ci | 10u L | Juic | Find the sum of interior angles for each polygon mentioned: 1. Heptagon 2. Dodecagon _____ _____ 3. Nonagon 4. Pentagon _____ _____ Find the number of sides in each case, given the sum of interior angles: 1. Angle Sum = 1620° n = _____ 2. Angle Sum = 720° n = _____ Find the unknown sides or the angles in the questions below, using the classification of polygons. **1.** The triangle ABC is equilateral and angle $A = 60^{\circ}$: Angle B = _____60° ; Angle C = _____60° _____ **2.** The square JKLM is a rhombus and JK = 4 cm: $LM = _____4 cm____ ; Angle K = _____90^{\circ}_____$ **3.** The parallelogram ABCD has angle $A = 80^{\circ}$, angle $B = 100^{\circ}$, angle $= 80^{\circ}$: Angle D = ______<mark>80°</mark>_____ **4.** An isosceles triangle DEF with angle $D = 90^{\circ}$, angle $E = 45^{\circ}$: Angle F = _____45°_____ Name: _____ Period: _____ Date: _____ Classifying Polygons Assignment ### Match the columns: | Trape zium | |---------------------| | Hexagon | | Parallelogram | | Right triangle | | Isos celes triangle | | Rhombus | | Pentagon | | Rectangle | Find the sum of interior angles for each polygon mentioned: 1. Heptagon 2. Dodecagon _____<mark>900°</mark>_____ _____<mark>1800°</mark>_____ 3. Nonagon 4. Pentagon _____<mark>1260°</mark>_____ _____<mark>540°</mark>_____ Find the number of sides in each case, given the sum of interior angles: 1. Angle Sum = 1620° 2. Angle Sum = 720°